### BEACH NOURISHMENT AND SEA TURTLES: A CASE STUDY ON HUTCHINSON ISLAND, FLORIDA

Ecological Associates, Inc.

Thanks to:

FDEP

Martin County, Florida

Applied Technology & Management







### EVALUATING BEACH NOURISHMENT PROJECTS

- Coastal Processes (Currents, Tides, Waves)
- Habitat Quality of Pre-Existing Beaches
- Characteristics of Borrow Sediments
- Beach Design (Length, Width, Interval)
- Construction Methods (Pumping, Tilling)
- Prevailing Weather







## POTENTIAL EFFECTS OF BEACH NOURISHMENT

- Nesting Habitat (Quantity and Quality)
  - Nest Densities and Nesting Success
  - Energy Expenditures During Nesting
  - Spatial Distribution of Nests
- Incubation Environment
  - Reproductive Success
  - Hatchling Fitness and Emergence Patterns



# NESTING HABITAT (QUANTITY AND QUALITY)

- Beach Profile (Width, Height and Slope)
- Sediment Compaction
- Sediment Grain Size and Color
- Temperature
- Moisture Content
- Gas Exchange



#### Beach Widths at Crawls











#### **Sediments - Control**





#### Sediments – North Treatment





#### Compaction Seaward of Dune





### COMPACTION ADJACENT TO NESTS AND ABANDONED DIGS (0-30 cm)





#### SEDIMENT MOISTURE CONTENT





#### CALCIUM CARBONATE CONTENT OF SEDIMENTS





## POTENTIAL EFFECTS OF BEACH NOURISHIMENT

- Nesting Habitat (Quantity and Quality)
  - Nest Densities and Nesting Success
  - Energy Expenditures During Nesting
  - Spatial Distribution of Nests
- Incubation Environment
  - Reproductive Success
  - Hatchling Fitness and Emergence Patterns



### Number of Emergences by Treatment





# Treatment Comparison of Emergences





### Number of Nests by Treatment





## Treatment Comparison of Nesting





# Nesting Success by Treatment





# Treatment Comparison of Nesting Success





#### DISTRIBUTION OF NESTS AMONG SURVEY SECTIONS - 1996





## POTENTIAL EFFECTS OF BEACH NOURISHIMENT

- Nesting Habitat (Quantity and Quality)
  - Nest Densities and Nesting Success
  - Energy Expenditures During Nesting
  - Spatial Distribution of Nests
- Incubation Environment
  - Reproductive Success
  - Hatchling Fitness and Emergence Patterns



## ENERGY EXPENDITURES DURING NESTING

- Crawl Length
- Scarp Encounters
- Time Required to Excavate Egg Chamber
- Number of Attempts to Construct Nest
- Egg Chamber Construction



### Crawl Length





### Percentage of Treatment Scarped





### Scarp Encounters





### Time to Dig Egg Chamber





### Frequency of Abandoned Digs





### Compaction at Nest Sites vs ADA





## POTENTIAL EFFECTS OF BEACH NOURISHMENT

- Nesting Habitat (Quantity and Quality)
  - Nest Densities and Nesting Success
  - Energy Expenditures During Nesting
  - Spatial Distribution of Nests
- Incubation Environment
  - Reproductive Success
  - Hatchling Fitness and Emergence Patterns



## Distance to Dune Nests vs False Crawls





#### DISTRIBUTION OF NESTS ACROSS BEACH







## POTENTIAL EFFECTS OF BEACH NOURISHIMENT

- Nesting Habitat (Quantity and Quality)
  - Nest Densities and Nesting Success
  - Energy Expenditures During Nesting
  - Spatial Distribution of Nests
- Incubation Environment (Quality)
  - Clutch Depth
  - Nest Fate (Exposure to Disturbance)
  - Reproductive Success



#### INITIAL CLUTCH DEPTH





#### INCUBATION PERIOD





### HATCHING SUCCESS INCLUDING WASHED OUT NESTS





#### Summary

- Emergence Patterns and Nest Densities
  - No Change in Emergence Patterns
  - No Increase in Nesting
  - Reduction in Nesting Success
- Increase in Beach Width
  - Significantly Longer Crawls
  - Broader Distribution of Nests
  - Habitat Suitability Determined Early in Crawl



### Summary (Continued)

- Compaction
  - Increased Digging Times
  - Digging Times Reduced by Tilling
  - Increased Number of Abandoned Digs
  - No Effect on Clutch Depth
- Change in Beach Profile
  - Altered Dune Horizon
  - Nest Loss and Scarping During Equilibration



## Summary (Continued)

- Incubation Environment Changed
  - -Sediments More Compact
  - Sediments Coarser With More Shell
  - -Sediments Darker and Warmer
  - Sediments More Moist
- Incubation Period Shortened



## Summary (Continued)

- Nest Fate
  - Fewer Nests Overwashed During Year 1
  - Larger Percentage of Nests Washed Out
- Reproductive Success
  - Nourished Beach Did Not Reduce Reproductive Success



#### RECOMMENDATIONS

- Carefully Evaluate Fill Material for Beach Compatibility
- Assess Feasibility of More Natural Fill Template
- Ensure Adequate Tilling
- Protect Nests On Seaward Portion of Beach
- Identify and Evaluate Feasibility of Alternative Construction Methods (Stockpiling)
- Implement Monitoring Programs That Isolate Effects of Nourishment (Baseline & Control)

